Processing math: 0%

miércoles, 28 de mayo de 2014

La seudoesfera, un mapa conforme, y un semiplano euclideo que vale por todo un plano hiperbólico

La seudoesfera es la superficie de revolución obtenida al girar 360º la tractriz en torno a su asíntota. Es como una esfera, en cuanto a que en todos sus puntos la curvatura total es la misma, pero en vez de ser positiva es negativa, y en magnitud también es igual a la inversa del cuadrado del radio. Siguiendo con el símil, los meridianos en la esfera (que se genera también por la rotación de uno de ellos) son como las sucesivas posiciones de la tractriz. Y los paralelos, secciones perpendiculares al eje de giro, son por supuesto círculos tanto en la esfera como en la seudoesfera.



Igual que de la superficie esférica hacemos mapas, para representar en una hoja bien plana un terreno situado sobre el globo terráqueo, también con la seudoesfera podemos hacer algo similar. Vamos a representar en un plano x_S,y_S los puntos de la seudoesfera. Los paralelos van a aparecer horizontales, paralelos al eje x_S. Los meridianos van a aparecer verticales, paralelos al eje y_S. Para que el mapa sea útil, debemos saber deducir la distancia entre dos puntos medida sobre una curva en la seudoesfera a partir de mediciones sobre el mapa, aplicando las escalas y ajustes adecuados, lo que se llama técnicamente la métrica.

Al representar los meridianos como semirrectas verticales, la coordenada y_S será función de la distancia \sigma, medida sobre un meridiano desde la base de la seudoesfera, y_S=y_S(\sigma).

Si todos los paralelos en el mapa se representam como segmentos paralelos al eje x_S, entre por ejemplo x_S=-\pi y x_S=\pi, al medir en el mapa lo que supone una vuelta completa sobre el paralelo, siempre medirá 2\pi. Pero la medida real sobre la seudoesfera depende de en qué paralelo se esté, luego el factor de ajuste dependerá de la coordenada y_S en el mapa, y de \sigma. Será una función f(\sigma). Para un desplazamiento sobre un paralelo ds_{paralelo} = f(\sigma) dx_S.

Para un desplazamiento sobre un meridiano, una tractriz generadora, ds_{meridiano} = g(\sigma) dy_S, el factor correctivo a aplicar dependerá de y_S y \sigma, pero no puede depender de x_S, dada la simetría axial de la superficie y que esta coordenada del mapa refleja el cambio sobre un paralelo.

¿Cómo determinar f(\sigma)? La longitud de un paralelo cuyo radio sea X=X_T será 2\pi X_T, o para un arco infinitesimal ds_{paralelo} = dx_S X_T . Vamos, que f(\sigma)=X_T. No olvidemos que x_S es una coordenada del mapa, pero X_T es una coordenada de la superficie. Aunque simple, no parece prometedor, pero resulta que X_T se expresa en términos de la distancia \sigma, medida sobre un meridiano desde la base de la seudoesfera. Tomando la tractriz (X,Y)=(1/ \cosh(t), t-\tanh(t) ):

\begin{equation*} \begin{aligned} \sigma & = \int_{(1,0)}^{(X_T,Y_T)} \sqrt{dX^2+dY^2} \\ & = \int_0^{t_T} \tanh(t) dt \\ & = \ln ( \cosh(t_T) ) = \ln ( 1 / X_T ) = - \ln (X_T) \end{aligned} \end{equation*}

es decir, X_T= e^{-\sigma}, con lo que f(\sigma)=e^{-\sigma}.

A la misma relación entre X_T y \sigma se llega de forma más geométrica (como se hace en el magnífico Visual Complex Analysis, de Tristan Needham) con los triángulos semejantes de la siguiente figura, donde aparece explícitamente R, el radio de la seudoesfera.


¿Cual es la relación entre y_S y \sigma? Tenemos libertad de elegirla un tanto arbitrariamente, pero para simplificar la métrica nos interesa que g sea la misma función que f, con lo que
d\sigma=g(\sigma) dy_S= e^{-\sigma} dy_S

dy_S = e^{\sigma} d\sigma
y_S = e^{\sigma} + \text{Cte.}

Si elegimos anular la constante, la base de la seudoesfera corresponde en el mapa a y_S=1. Tenemos que y_S=e^{\sigma}, luego f(\sigma)\equiv g(\sigma)=e^{-\sigma}=1/y_S y la métrica queda

ds = \sqrt{ ds^2_{paralelo} + ds^2_{meridiano} } = \frac{\sqrt{dx_S^2+dy_S^2}}{y_S}

La gran ventaja de esta elección es que nuestro mapa representa a la seudoesfera de manera conforme: los ángulos entre segmentos infinitesimales en el plano son iguales a los ángulos sobre la seudoesfera. El factor de paso de las medidas del mapa a la superficie, en lo pequeño, no depende de la dirección.


Estupendo, ya tenemos un mapa de la seudoesfera, esa superficie de curvatura negativa constante, igual a -1 para radio unidad. El trozo de plano euclideo x_S,y_S que ocupa el mapa es una franja infinita en altura (desde y_S=1 hasta \infty), y comprendida entre x_S=-\pi y x_S=\pi. Y ahora el gran pase mágico. Ampliamos nuestro mapa, a izquierda y derecha sin límites, y hacia abajo hasta y_S=0 sin llegar a incluir el eje de abcisas, y declaramos que sigue aplicandose la misma expresión de la métrica. Entonces resulta que este semiplano y_S > 0 con la métrica
ds = \frac{\sqrt{dx_S^2+dy_S^2}}{y_S}
es un mapa completo del plano hiperbólico de Lobachevsky, Bolyai y Gauss, llamado el modelo del semiplano, atribuido a veces a Poincaré, aunque empleado antes por Beltrami.

No hay forma, según Hilbert, de obtener en el espacio tridimensional una superficie suave que tenga como geometría intrínseca la del plano hiperbólico. Pero para entender y expresar los resultados de esa geometría no hace falta tal superficie, basta con el mapa. Pues el mapa no es el territorio pero expresa fielmente sus propiedades geométricas.

La ampliación del mapa de la seudoesfera a lo ancho equivale a considerar en vez de una superficie cerrada sobre sí, cual cilindro como es la seudoesfera, una superficie que la recubre infinitamente. Y la ampliación en vertical más allá del borde base de la seudoesfera, hacia abajo hasta y_S=0, que en el mapa es poca cosa, supone una distancia infinita debido a la forma de la métrica. Cuanto más cerca de y_S=0 estamos, un mismo trocito en el mapa equivale a más y más longitud real en el plano hiperbólico. La franja horizontal entre 0 y 1 en el mapa representa una extensión de plano hiperbólico tan infinita como el resto del semiplano del mapa. Es la magia de lo infinito y de lo infinitésimo.